Automotive manufacturing accelerometer applications
Vibration:
The cornerstone of condition monitoring
Automotive manufacturing applications

- Spindle bearings
- Motor bearings
- Cooling tower motor and gearbox
- Stamping press motor and gearbox
- Paint booth air supply and exhaust fans
- Paint oven air supply and exhaust fans
- Factory air supply fans
Benefits of vibration monitoring

- Minimize unplanned downtime
- Plan for maintenance during downtimes
- Improve product quality because
 - Machines are in a known condition and can be relied upon to work when needed
 - Smooth running machines are critical in some applications
 - Machining operations
 - Robot arm movement such as paint spray arms
 - Paint nozzles
 - Maximize cutting tool usage
 - Ensure quality of working environment for all employees
 - Contribute to plant safety because of better running machinery
- Equipment is monitored and analyzed while it is running
- Identifies a variety of machinery faults
Causes of vibration

- Mechanical defects
 - Bearings
 - Impellers
 - Gears
 - Blades

- Mechanical conditions
 - Imbalance
 - Resonance
 - Soft foot
 - Misalignment

- Electrical conditions
 - Stator
 - Windings
 - Rotor
Bearing faults which can be detected with vibration analysis

- Excessive loads
- Over heating
- True brinelling
- False brinelling
- Normal fatigue failure
- Reverse loading
- Contamination
- Lubricant failure
- Corrosion
- Misaligned bearings
- Loose fits
- Tight fits
Automotive manufacturing accelerometer applications

Excessive loads

- Usually causes premature fatigue
- Can be alleviated by reducing the load or redesigning with a bearing of greater capacity
Over heating

- Symptoms are discoloration of the rings, balls, and cages from gold to blue
- Temperature in excess of 400° F can anneal the ring and ball materials and degrade or destroy lubricant
- The resulting loss in hardness reduces the bearing capacity causing early failure
- In extreme cases, balls and rings will deform
True brinelling

- Occurs when loads exceed the elastic limit of the ring material
- Creates brinell marks which show as indentations in the raceways and increase bearing vibration (noise)
- Caused by any static overload or severe impact
False brinelling

- Creates elliptical wear marks in an axial direction at each ball position with a bright finish and sharp demarcation, often surrounded by a ring of brown debris
- Indicates excessive external vibration
- Corrected by isolating bearings from external vibration, and using greases containing antiwear additives
Normal fatigue failure

- A fracture of the running surfaces and subsequent removal of small discrete particles of material
 - Also referred to as spalling
- Can occur on the inner ring, outer ring, or balls
- A “progressive” failure
 - Once initiated, it will spread with continued operation
 - It will always be accompanied by a marked increase in vibration
- Remedied by replacing the bearing or redesigning with a bearing that has a greater calculated fatigue life
Reverse loading

- Angular contact bearings are designed to accept an axial load in one direction only.
- When loaded in the opposite direction, the elliptical contact area on the outer ring is truncated by the low shoulder on that side of the outer ring.
- The result is excessive stress and an increase in temperature, followed by increased vibration and early failure.
- Corrective action is to re-install the bearing correctly.
Contamination

- A leading cause of bearing failure
- Symptoms are denting of the bearing raceways and balls, resulting in high vibration and wear
- Clean work areas, tools, fixtures, and hands help reduce contamination failures
- Keep grinding operations away from bearing assembly areas and keep bearings in their original packaging until you are ready to install them

Irregular dents or material embedded in raceways.

Balls will be similarly dented, dull, or scratched.
Lubricant failure

- Ball bearings depend on the continuous presence of a very thin (millionths of an inch) film of lubricant between the balls and races, and between the cage, bearing rings, and balls.
- Insufficient or ineffective lubricant results in excessive wear of balls, ring, and cages will that leads to overheating and subsequently catastrophic failure.
- Discolored (blue/brown) ball tracks and balls can occur.
- Failures are typically caused by restricted lubricant flow or excessive temperatures that degrade the lubricant’s properties.
Corrosion

- Red/brown areas on balls, race-way, cages, or bands of ball bearings may be present
- Results from exposing bearings to corrosive fluids or a corrosive atmosphere
- In extreme cases, can initiate early fatigue failures
- Corrected by diverting corrosive fluids away from bearing areas and using integrally sealed bearings whenever possible
Misalignment

- Can be detected on the raceway of the non-rotating ring by a ball wear path that is not parallel to the raceways edges.
- If it exceeds 0.001 in./in, will cause an abnormal temperature rise in the bearing and/or housing and heavy wear in the cage ball-pockets.
- Appropriate corrective actions include:
 - Inspect shafts and housings for runout of shoulders and bearing seats.
 - Use single point-turned or ground threads on non hardened shafts and ground threads only on hardened shafts.
 - Use precision grade locknuts.
Loose fits

- Can cause relative motion between mating parts
- If the relative motion between mating parts is slight but continuous, fretting occurs
 - Fretting is the generation of fine metal particles which oxidize, leaving a distinctive brown color. This material is abrasive and will aggravate the looseness. If the looseness is enough to allow considerable movement of the inner or outer ring, the mounting surfaces (bore, outer diameters, faces) will wear and heat, causing noise and runout problems.
Tight fits

- Indicated by a heavy ball wear path in the bottom of the raceway around the entire circumference of the inner ring and outer ring.
- Where interference fits exceed the radial clearance at operating temperature, the balls will become excessively loaded, resulting in a rapid temperature rise accompanied by high torque.
- Continued operation can lead to rapid wear and fatigue.
- Corrective action is a decrease in total interference.
Route based program vs permanent mount solutions

- Route based is usually less costly to implement
 - Exposes the data collector to hazardous conditions
 - Single transducer can add to data collection time
- Permanent mount sensors have a higher up front cost
 - Simplify route based data collection
 - Cable connections can be done in safe locations
 - Machining operations can be monitored because the sensor is in place
- Some examples of permanent mounted sensors in automotive manufacturing settings follow
 - Boring machine spindles
 - Turnmat machine
 - Motors
 - Center hung pump
Automotive manufacturing accelerometer applications

Boring machine spindles
Automotive manufacturing accelerometer applications

Boring machine spindles
Automotive manufacturing accelerometer applications

Turnmat machine

Bores engine head
Motor

Boring machine for crank shaft and rods
Center hung pump
Effects of vibration

- The expended energy from vibration causes wear of components, reduced performance, increased energy consumption and reduced reliability.
- Vibration can excite natural frequencies causing significant vibration at the components.
How to detect vibration

1. Raw signal from accelerometer
2. A/D conversion and signal processing
3. FFT or spectrum
4. Digitized waveform
Vibration data collection methods

- 4-20 mA trending
- Portable data collection
- Online monitoring
When to apply vibration monitoring

- **Highly critical** (online shutdown protection)
- **Mission critical** (portable, online, or 4-20 mA)
- **Balance of plant** (4-20 mA)
- **Run to failure** (no monitoring)
Vibration analysis can detect many common problems

- **Machine faults**
 - Imbalance
 - Misalignment
 - Bent shaft
 - Mechanical looseness
 - Casing / foundation distortion
 - Bearing faults
 - Motor faults
 - Resonance

- **Machine design**
 - Universal joints
 - Asymmetrical shafts, cams
 - Gear mesh
 - Couplings
 - Bearings
 - Pumps and fans
 - Reciprocating machines
 - Motors / generators
Meggitt Sensing Systems

+1 301 330 8811
wilcoxon@meggitt.com
Automotive manufacturing accelerometer applications

The information contained in this document is the property of Wilcoxon Research and is proprietary and/or copyright material. This information and this document may not be used or disclosed without the express authorization of Wilcoxon Research. Any unauthorized use or disclosure may be unlawful.

The information contained in this document may be subject to the provisions of the Export Administration Act of 1979 (50 USC 2401-2420), the Export Administration Regulations promulgated thereunder (15 CFR 730-774), and the International Traffic in Arms Regulations (22 CFR 120-130). The recipient acknowledges that these statutes and regulations impose restrictions on import, export, re-export and transfer to third countries of certain categories of data, technical services and information, and that licenses from the US Department of State and/or the US Department of Commerce may be required before such data, technical services and information can be disclosed. By accepting this document, the recipient agrees to comply with all applicable governmental regulations as they relate to the import, export and re-export of information.'