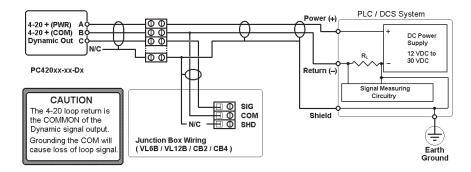

Velocity loop powered sensors with dynamic vibration output



PC420V-Dz dual output series

Wilcoxon's 4-20 mA vibration sensors integrate easily with an existing PLC, DCS or SCADA system. The PC420V-Dz series dual output sensors provide 24/7 monitoring of overall machine vibration for continuous trending, alerting users to changing machine conditions and helping to guide maintenance in prioritizing the need for service. The choice of true RMS or peak output allows you to choose the sensor that best fits your industrial requirements. The 4-20 mA output of the PC420A series is proportional to acceleration vibration. The dynamic output signal is derived from an internal buffered amplifier and requires that the 4-20 mA loop be powered.

Wiring diagram

Note: Dynamic output must be galvanically isolated when connected to an on time system.

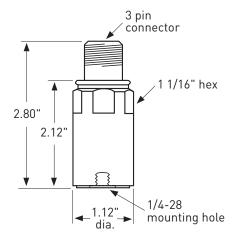
Certifications

Key features

- · Choice of peak equivalent or true RMS output
- · Dynamic signal output
- · Easily integrated into existing process control systems
- · Manufactured in an approved ISO 9001 facility

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.

Velocity loop powered sensors with dynamic vibration output


PC420V-Dz dual output series

SPECIFICATIONS

Output, 4-20 mA:		
Full scale 20 mA, ±5%	see Table 1 on page 1	
Frequency response: ±10% ±3 dE	10 Hz - 1.0 kHz 4.0 Hz - 2.0 kHz	
Repeatability	±2%	
Transverse sensitivity, max	5%	
Dynamic output:	PC420V-DA PC420V-DV	
Sensitivity, ±10%	100 mV/g 100 mV/in/sec	
Full scale	20 g 1.5 ips at 1 kHz	
Frequency response, ±3 dB	2.5 Hz - 10 kHz 2.5 Hz - 2.5 kHz	
Amplitude nonlinearity, max	1%	
Resonant frequency, mounted, nom	nal 25 kHz	
Transverse sensitivity, max	5%	
Power requirements (2-wire loop power Voltage at sensor terminal): 12 - 30 VDC	
Loop resistance ¹ at 24 VDC, max	700 Ω	
Turn on time, 4-20 mA loop	< 30 sec	
Dynamic output, bias output voltage	+3.3 VDC, re: connector pin B	
Dynamic output noise, equiv. g: 2.5 Hz - 10 kHz	PC420V-DA PC420V-DV 2 mg 0.002 ips	
Grounding	case isolated, internally shielded	
Temperature range	–40° to +85°C	
Vibration limit	250 g peak	
Shock limit	2,500 g peak	
Sealing	hermetic	
Sensing element design	PZT ceramic / shear	
Weight	162 grams	
Case material	316L stainless steel	
Mounting	1/4-28 tapped hole	
Output connector	3 pin, MIL-C-5015 style	
Mating connector	R6G type	
Recommended cabling	J9T3A	

Accessories supplied: SF6 mounting stud; calibration data (level 2)

Connections		
Function	Connector pin	
loop positive (+)	Α	
loop negative (–), dynamic common	В	
dynamic output	С	
ground	shell	

Notes: 1 Maximum loop resistance (R_L) can be calculated by:

$$R_{L} = \frac{V_{DC power} - 10 \text{ V}}{20 \text{ mA}}$$

DC supply voltage	R _L (max resistance) ²	R _L (minimum wattage capability) ³
12 VDC	100 Ω	1/8 watt
20 VDC	500 Ω	1/4 watt
24 VDC	700 Ω	1/2 watt
26 VDC	800 Ω	1/2 watt
30 VDC	1,000 Ω	1/2 watt

 $^{^{\}rm 2}$ Lower resistance is allowed, greater than 10 Ω recommended.

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.

 $^{^3}$ Minimum R_L wattage determined by: $(0.0004 \times R_L)$.