

VIBRATION SENSOR CABLING CONSIDERATIONS

OVERVIEW

- Anatomy of a cable assembly
- 3 things to consider for cable assemblies
- Cable assemblies for walk around vibration data collection
- Connectors and cables for permanently installed vibration sensors
 - Termination
 - Connector design
 - Grounding and isolation
 - Environmental resistance
- Maximum cable length

- Temperature
- Cable design
- Shielding
- Environmental resistance

9/7/2023

ANATOMY OF A CABLE ASSEMBLY

SENSOR CONNECTOR CABLE

DATA COLLECTION CONNECTION

3 THINGS TO CONSIDER FOR CABLE ASSEMBLIES

WALK AROUND MONITORING OR PERMANENT INSTALLATION

Walkaround monitoring

Permanent installation

CABLES FOR WALK AROUND VIBRATION DATA COLLECTION

WHAT TO LOOK FOR

Portable

- Connector compatible with sensor
 - Typically MIL-C-5015-style or M12
- Other connector compatible with data collector
 - Wilcoxon, SKF, Entek, Emerson, etc.
- Reinforced, ribbed cable joints for strength, maximum flexibility, and strain relief
- Coiled or straight cable
- EMI / RFI shielding
- Breakaway safety connector, when needed

CONNECTORS FOR PERMANENTLY INSTALLED SENSORS

CONNECTOR DESIGN MUST BE COMPATIBLE WITH SENSOR

MIL-C-5015 M12 Specialty Coaxial • Microdot • 2-socket 4 socket • MIL-DTL-26482 • BNC Bendix • 3-socket 5 socket •

DDEL 712

DATA COLLECTION FOR PERMANENTLY INSTALLED ACCELEROMETERS

TERMINATION END STRIPPED AND TINNED FOR WIRING TO JUNCTION BOX

CONNECTORS

Permanent

GROUNDING

 Grounded at just one end of the measurement chain, either the sensor or the data acquisition system, to prevent ground loops

ISOLATION

 Available with electrical contact between shield and transducer or with electrical isolation between shield and transducer

SENSING TECHNOLOGIES

CONNECTORS

ENVIRONMENTAL RESISTANCE

- Chemical resistance
 - Oils, fuels, lubricants, and mineral acids
- EMI and RF resistance

Protection against solids Protection against liquids No protection **0** 0 No protection Objects >50 mm 1 1 Vertically dripping water Objects > 12.5 mm 2 2 Angled dripping water Objects > 2.5 mm 3 3 Sprayed water Objects >1.0 mm 4 Splashed water 4 Dust-protected 5 5 Water jets Dust-tight 6 6 Pressure jets Immersion to 1 meter 8 Indefinite immersion

66

IP RATING

61

65

60

9/7/2023

68

67

CONNECTORS AND CABLES

TEMPERATURE, RADIATION

- Sensor, connector and cable must be able to withstand the temperature at the measurement location
- Radiation resistance

CABLE CROSS SECTIONS

Wilcoxon J9T2A

FEP TEFLON JACKET ALUMINUM/POLYESTER SHIELD 18 AWG MYLAR BINDER TAPE 20 AWG DRAIN XXXXXX BRAIDED SHIELD - POLYESTER TAPE SEPARAT FEP TEFLON JACKET — 20 AWG FILLERS FEP INSULATION FEP TEFLON FIBERGLASS FILLERS INSULATION

Wilcoxon J9F

CABLES FOR PERMANENTLY INSTALLED ACCELEROMETERS

CABLE DESIGN

- Used with BNC and Microdot connectors
- Inner conductor carries power and signal, shield acts as signal common
- Low-noise mineral insulation minimizes triboelectric effects

- Most common for industrial apps
- Used with 2-pin sensors and 2socket connectors
- Minimizes electrical noise
- Carries power/signal, common and ground capability (shield) all separate

- Used with 3-, 4- or 5-pin sensors and corresponding connector
- Dual-output or triaxial sensors, some hazardous area installations
- Minimizes electrical noise

9/7/2023

CABLES FOR PERMANENTLY INSTALLED SENSORS

ENVIRONMENTAL RESISTANCE

• Foil – RFI

Braid – EMI and RFI

Drain wire – shielding and grounding

Protection

- Spiral armored jacket drops
- Stainless steel overbraid cuts, abrasions

- Teflon temps, chemicals, abrasions
- PVC chemicals
- Polyurethane water, abrasions

MAXIMUM CABLE LENGTH

- Not a consideration with 4-20 mA sensors
- Not relevant for cable runs <100 ft (30 m)
- For IEPE sensors requiring cable runs >100 ft, a calculation must be run to ensure signal fidelity
- Calculation can be done manually or simplified with downloadable calculator

THANK YOU!

ANY QUESTIONS?

Contact us:

- Via email at: info@wilcoxon.com
- Online at: wilcoxon.com
- By phone at:
 +1-301-330-8811

9/7/2023

CABLING REQUIREMENTS

DIFFERS BY HAZARDOUS AREA

- Conventional shielded cables may be used in Intrinsically Safe applications
 - Cable capacitance must be factored into Zener barrier calculations
 - C_{cable} = length in feet * capacitance pF/foot
- Class I Division 2 requires a mechanism for connector removal, to prevent inadvertently backing off the sensor
 - Safety wire holes present on both the sensor body/screw and connector body are wired together during installation to prevent twisting off
 - Potting the back shell of the connector provides additional strength and electrical protection
- IS and CID2 installations have grounding requirements specific to the sensor and certification – check manufacturer documentation
- Explosion proof devices require rigid conduit that must also be rated as explosion proof to maintain system integrity

MANUFACTURER'S CONTROL DRAWING

TRANSDUCER DEVICE RATINGS AND INSTALLATION REQUIREMENTS

