

9 ACCELEROMETER SPECS YOU PROBABLY DON'T CHECK – AND WHEN YOU SHOULD!

VIB202: UNDERSTANDING ACCELEROMETER SPECIFICATIONS

CASE MATERIAL

WHEN TO CHECK: AGGRESSIVE APPLICATIONS, HARSH OR WET ENVIRONMENTS

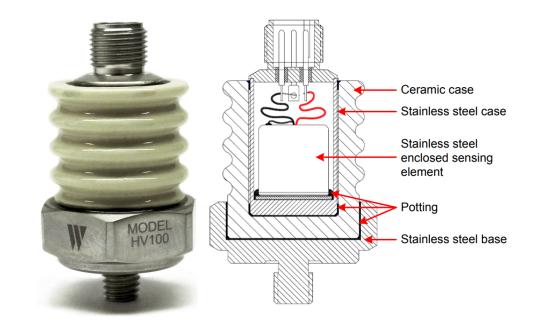
- In harsh and wet environments, look for:
 316L stainless steel
 - Unspecified stainless steel
- In deep and sea water environments, look for: titanium to avoid galvanic corrosion
- Avoid, except for laboratory environments: aluminum

SEALING

WHEN TO CHECK: ALWAYS, ESPECIALLY UNDERWATER APPLICATIONS

- Sealing ensures long term reliability for sensitive internal electronics
- Look for: true hermetic sealing with helium leak testing
 - May have to ask the manufacturer
- Avoid "IP68" and "epoxy sealed"

Leakag (cc/sec)	Example	Time for 1cc to leak (at 1 atm.)	Suitable test method
10-4	Poorly built accelerometers	2.78 hours	Bubble test
10-6	Beverage cans	11.57 days	Helium leak test
10-7	Vacuum process systems	3.86 months	Helium leak test
10-8	Wilcoxon industrial sensor	3.22 years	Helium leak test
10-9	Pace maker	32 years	Helium leak test



ELECTROMAGNETIC SENSITIVITY

WHEN TO CHECK: ELECTRICAL INTERFERENCE IS PRESENT

- When EMI is present, look for: <100 µg/gauss
 - Contact the manufacturer if not specified or listed generically as "CE"
- For high-EMI and EFT applications, look for: electrical isolation between the sensor and the machine being monitored and electrical insulation of the accelerometer's case and connector
- Cables with braided shields offer up to 95% shielding of signal carrying conductors

CALIBRATION DATA OF DELIVERED SENSOR

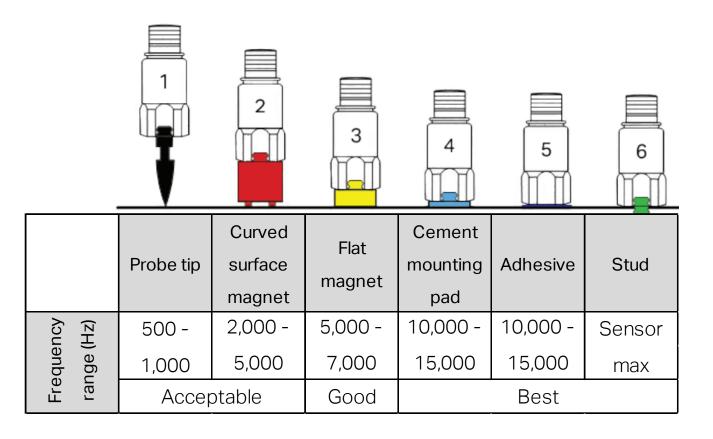
WHEN TO CHECK: ALWAYS ENTER THIS INTO INSTRUMENTATION

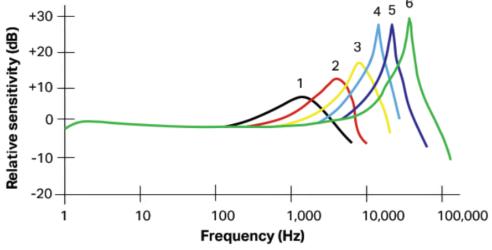
Example #1

- Guaranteed sensitivity: 100 mV/g ±5%
- Actual sensitivity: 96 mV/g
- Sensor output: 2900 mV
- Measured acceleration: 30.2 g

Example #2

- Typical sensitivity: 100 mV/g ±10%
- Actual sensitivity: 87 mV/g
- Sensor output: 2900 mV
- Measured acceleration: 33.3 g
- Reported acceleration without calibration data: 29 g

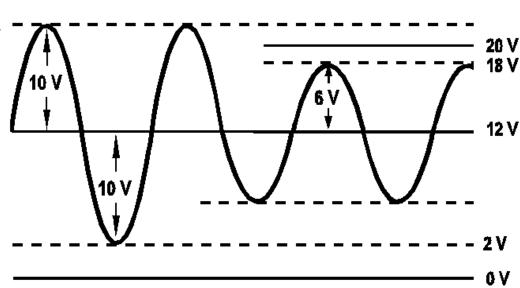




BEYOND THE SPECS: MOUNTED FREQUENCY RANGE

WHEN TO CHECK: ALWAYS

MOUNTING METHOD CAN LIMIT THE HIGH FREQUENCY RESPONSE OF THE SENSOR

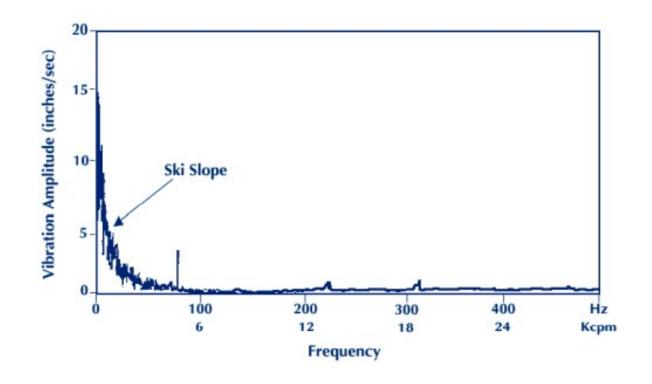


ACCELERATION RANGE AND VOLTAGE SUPPLY

WHEN TO CHECK: LIMITED POWER SOURCE APPLICATIONS

Acceleration range, VDC > 25 V 80 g peak Power requirement: 18 - 30 VDC Voltage source

- 50g v 80g output voltage
- 5V output v 8V output (100mV/g x 5 V \rightarrow 50g)
- Vibration limit and shock limit compared to accel range

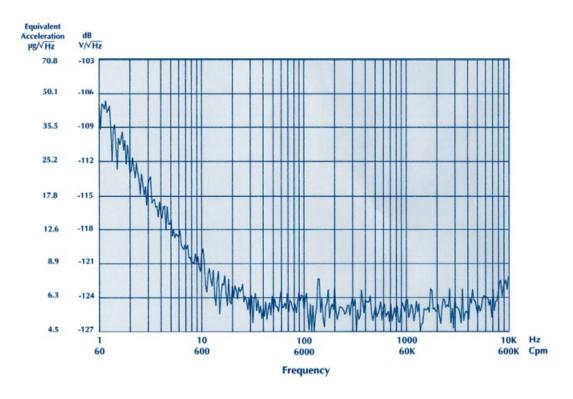


24 V

TURN ON AND SETTLING TIME

WHEN TO CHECK: WALK-AROUND DATA COLLECTION

- Sensor output is impacted by
 - Powering on in permanent installations
 - Magnetic mounting with a handheld vibration meter
- Sensor overload
 - When the total vibration limit is exceeded, ski slopes and clipping may occur
- For permanent installations, vibration junction boxes can help ensure reliable data
- Look for: short turn on times and settling times speed data collection

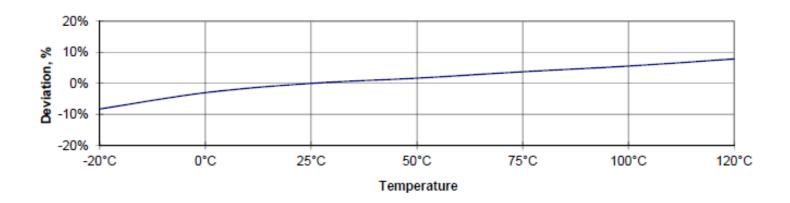


SPECTRAL NOISE

WHEN TO CHECK: THE FREQUENCY OF INTEREST IS BELOW 10 KHZ, MOST INDUSTRIAL CONDITION MONITORING APPLICATIONS

Electrical noise, eq	uiv. g:	
Broadband	2.5 Hz to 25 kHz	700 µg
Spectral	10 Hz	10 μg/√Hz
	100 Hz	5 μg/√Hz
	1,000 Hz	5 μg/√Hz

- Broadband is important but does not isolate the frequency range of interest
 - Specification range may vary by manufacturer
- Look for: spectral noise at <u>your</u> frequency range of interest



TEMPERATURE RESPONSE

WHEN TO CHECK: APPLICATIONS OUTSIDE OF ROOM TEMPERATURE (25°C)

- Different from operating temperature range
- Indicates the expected change in nominal sensitivity across the operating temperature range
- Important to know and factor into the overall accelerometer output

REVIEW

- Case material: look for 316L stainless steel for rugged applications
- **Sealing**: true hermeticity with helium leak testing for the longest sensor life
- **Electromagnetic sensitivity**: ensure protection of your data and your sensor
- Calibration data: enter this into your instrumentation
- **Mounted frequency response**: mounting techniques may degrade the usable frequency range
- **Acceleration range and power supply**: confirm the deployed sensor has enough power to perform
- **Turn on and settling time**: don't take data before the sensor is ready
- **Spectral noise**: spectral noise data confirms suitably low for your application
- **Temperature response**: account for changes in sensitivity in hot and cold environments
- **BONUS Piezoelectric stabilization**: prevent measurement drift as the sensor ages

11

THANK YOU!

Contact us:

- Via email at: <u>info@wilcoxon.com</u>
- Online at: wilcoxon.com
- By phone at:+1-301-330-8811

12